
《三角形的内角和》教学反思
作为一位刚到岗的人民教师,教学是重要的工作之一,通过教学反思可以有效提升自己的课堂经验,教学反思我们应该怎么写呢?以下是小编精心整理的《三角形的内角和》教学反思,希望对大家有所帮助。
《三角形的内角和》教学反思1三角形内角和知识,其实早在四年级上学期,角的单元教学中就已经涉及到了。只是做了介绍,这学期把它拿出来专门学习。
首先,我对三角形的分类进行了复习,让学生们对知识产生连续性。讲解内角和内角和的定义。再复习平角的知识,为后面的拼三个内角和的结论做铺垫。
先引入长方形和正方形,让学生算他们的内角和,接着展示一个长方形,被一把剪刀沿一条对角线剪开,分成了两个三角形,再让学生们讨论三角形的内角和又是多少?学生很快反应说,是180度,因为360÷2=180。既然给出了答案,我就跟着提出问题:是不是所有的三角形的三个内角和一定是180呢?给学生指出了探究学习的目标。
通过测量自己手中的三角板,学生们答案是肯定的,但有的学生就提出来了不同意意见。她认为手中的三角板很特殊,不能代表所有的三角形,结论还不能成立。这样就让课堂教学到达了最关键的阶段。所以我任意的列举了一个锐角三角形、直角三角形和钝角三角形,准备让学生们自己动手量量,然后再总结结论。但又考虑学生在实际操作时,对量角的方法有遗忘或出差错,影响教学的时间和效率,我放弃了学生操作的环节,改成我用量角器量,点学生来给我读度数的方法。
效果比预期的要好,学生们都争先恐后的想上前读度数,所以都特别积极。有时为了1-2度的误差而争论不休,有时也为自己精确度数而喝彩,学生们不仅复习了量角器量角的方法,更是验证了三角形的内角和度数。教学一气呵成,学生们掌握的情况非常好。
想不到我一个小小的改变,竟会对教学产生不可估计的效果,不仅可以点燃他们求知的'欲望,更可以激发他们特有的童趣,让整个数学课堂散发着一种催人奋进的热情。数学课活了起来,知识动了起来,学生们的脑筋更是转了起来,课堂效率也升了起来。
这节课,不仅让我感受了教学中创造的“意外”精彩,更让我重新定位了四年级学生的看法。虽然带了快一年的四年级数学,但心里总是觉得他们太顽皮、太马虎、不听话,讲过和做过很多遍的习题,还是一直再错;强调过很多次的要求,还是毫不注意;早已墨守成文的规定,也是明知故问,现在想想,这是他们的年少无知,也正是他们的纯真可爱。毕竟他们只是一群10岁大的孩子,现在的他们具有最天真无邪的思想和无忧无虑的世界,这也是我们每一个人都曾拥有过的美好回忆。
同时他们身上隐藏着许多“宝藏”,只要我们善于寻找和发现,这些“宝藏”将会带来无限财富。
教学让我有了新发现,相同的知识,不同的教法,效果也不相同。有时“意外”会带来惊喜;有时“安排”会失去精彩。确实,这不禁让我想起了一句广告:惊喜无处不在。
《三角形的内角和》教学反思2一、教材分析
三角形的内角和这堂课的内容中心的知识点是一句话:三角形的内角和是180度。学生很容易掌握。但是,三角形的内角和为什么是180度,教材采用了观察三角板,引导学生提出疑问:是不是所有的三角形内角和都是180度,进而用三种不同类型的三角形折一折,验证出这个结论。可以说,教材本身的编排就是让学生在动手操作中自主得出结论,而不是死记硬背。
一、操作盲点
在教学中,我按照教材的意图,引导学生动手操作推导出三角形的内角和。让我感到遗憾的是,许多学生不知道如何去折三角形,以巡视的过程中,发现了许多错误的折法。我想,这一环节采用小组合作的形式也许会更好。但是小组合作有时候也会流于形式,不利于一些中下等学生自主思考。在小组合作这一形式的运用上,想达到效果真的是很难以把握的事情。
三、语言表达
不过,让我感到高兴的事,这一段时间一直在做的事情终于有了一点头绪,这一学期来,我一直在注重让学生用语言表达出自己的思想,昨天在课上,我发现有一些学生很愿意去说,而且说出来话的还是蛮有一点数学语言的味道的。譬如想想做做第1题,求一个直角三角形中一个锐角的度数时,大部分学生是用90度去减的,我问了一个为什么?有学生当即就说:是因为直角三角形另外两个锐角的和加起来是90度,所以只要用90度去减就可以了。很简单的一句话,让我很有成功感,因为出自学生的口中,我班上是这样一种情况,大多数学生会做但是却不愿意用语言去表达,而我一向认为,语言是思维的外壳,不说如何能表达自己的思想,大胆自信地表达自己的语言,对自己的性格也是一种很好的训练。所以强调一定要去说。经过一段时间的强调,终于初见希望。真是心情很好。
今天讲了三角形的内角和,因为有些学生已经知道了三角形的内角和是180度,而且为了使课上生动我故意没有让他们课前预习。当我揭示课题后,学生中有几位按捺不住激动,小声嘀咕是180度。我于是顺势提问,同意他们的意见的举手,一半以上的学生不约而同举起了手。我说到底是不是呢?你们有什么办法可以去验证。我让他们拿出课前准备的三角形,小组讨论后动手验证。经过巡视发现所有的小组都想到了通过量出各个三角形的内角再计算出内角和来验证的。我让他们再想想有没有别的方法可以验证出三角形的内角和是180度的。可惜只有两个小组通过动手折一折来验证的,在他们的演示后我在黑板上的三角形上板书出各个角的度数及三只角的度数和的算式。同时我让他们对直角三角形的内角和等式进行观察,他们发现了其中的两个锐角和总是90度。我提问通过折我们把三角形的.三只内角拼在一起组成一个平角,还有没有其他办法也可以把三只角拼一拼的,可惜没有一个同学想到把三只角撕下来拼的。以前教的时候好像学生想到的方法比现在的学生多,这让我很难过和想不通。是不是我平时的教学没有最大程度地调动起学生的学习激情?是不是我平时的教学有过于急而没有给学生足够的时间思考?是不是我平时总有越俎代庖的现象?……可是我觉得平时我还是就最大程度注意到这些的,看来教学的确是值得我们永久去实践、探索的。
《三角形的内角和》教学反思3今天讲解的《三角形内角和》一课,是在四年级上学期《角》的单元教学基础上进行教学的,在《角》的单元教学中就已经涉及到了三角形内角和,学生对其有了初步的了解,这学期在原有的基础上进一步继续学习有关知识。
首先,在教学中我对三角形的分类进行了复习,通过让学生们对原有认知的回忆,为新课的学习做好铺垫。进而讲解内角和内角和的定义,再复习平角的概念,在此基础上,先出示长方形和正方形,让学生算它们的内角和,接着出示一个长方形,用剪刀沿一条对角线剪开,把平行四边形分成两个三角形,再让学生们讨论三角形的内角和又是多少?根据刚才的计算,学生很快反应过来说,是180度,因为360o÷2=180o。通过这 ……此处隐藏8353个字……都是一样的,也就是是一个固定的数,有了这样的前提之后才能让学生进行猜测并验证。所以在设计的时候,我把这二个活动结合在一起进行了。通过让学生观察,猜测哪个三角形的三个内角和相加的和最大?通过这一问题,既引出了内角和,也抛出了猜测。在这个问题抛出之后,通过和吴校长讨论,我们做了各种各样的预设。在课上,问题一抛下去,学生都说是一样的,是180度。面对这样的起点,我就接着问学生一个问题,你是怎么知道的?第一位学生回答得支支吾吾,也不知道该怎么说,就坐下了。第二位学生说:因为三角板上有过的,相加的和是180度。这个回答也是在我预设之内的,学生对三角形的内角和接触最多的就是从三角板上获得的,所以当学生有了这样的回答之后。我就说,同学们,看一看我们的三角板,你发现它们都是……(直角三角形)那钝角三角形和锐角三角形呢?你们仔细研究过吗?今天我们就来研究一下这个问题。通过这一环节,直接把话题引到了今天学习的内容上来了。
三、动手测量,验证猜测
在这个过程中,我分了二个层次,第一:学生量教师给的三种类型的三角形。
第二:生任意画一个三角形进行验证。让学生经历从特殊到普遍的过程。这是动手操作的过程。因为前面没有试教过,所以在这里花的时间比较多,我自己觉得课上得有点拖,也有点沉闷。但在这一过程中,我也发现了很多的问题。很多学生是运用180度这个结论来量的。比如说他先量了二个角,最后一个角就不量了,直接用180度减去前面二个角,就是第三个角。我想如果这样的话就失去了测量的意义了。在交流的过程中,很多同学都说他们测量的结果是180度,导致另外一些不是180度的学生不敢表达自己的意见。我想面对这样的问题,如果我在交流反馈的`时候,再多加一个环节,问你量出来的三个角分别是几度,内角和是几度,这样是不是会减少一些这样的问题。
四、通过剪剪拼拼,再次验证
这一环节,我选择了直接告诉学生,剪下三个角来拼一拼,看看有什么发现。
通过了解,其实有一些学生是知道的。(在听课的过程中,旁边的四年级老师告诉我,他们以前组织过这样的活动,让学生剪角、拼角,所以一些学生有这样的基础)因为事先没有了解,所以我低估了学生的能力。如果我选用抛问题的方法,可能会出现一些亮点。当然这也只是一小部分学生而已,其实在实际的操作过程中,在我电脑演示了剪与拼的过程之后,再让学生自己任意剪一剪、拼一拼的时候,还是有很多学生是不会拼的,不知道三个角该怎样放。我想在这个过程中,我在电脑演示的时候,如果再多加引导一下的话,可能在操作的过程中,更多的学生能够参与进来。
整堂课下来,我自己觉得上得很沉闷,由于操作活动比较多,学生的注意力也不是非常集中,当然这和我自己有很大的关系,因为没试教,心里紧张,也因为自己没有经验,课堂气氛没能调节得很好。幸亏有幸听了另外二位老师的课,感觉受益匪浅。特别是徐老师的设计,给了我很大的启示。在自己的课中,我就觉得虽然验证的过程很严密,从特殊到普遍这样一个过程,但是留给学生思考的空间特别少,学生只是进行一些操作。而徐老师通过对直角三角形的验证,继而请学生选择自己喜欢的方法对钝角三角形和直角三角形进行验证,我认为这样设计比我这样设计要好,学生的学习主动性也一下子体现了出来。在验证的过程中,也是方法的运用。总而言之,在上课的过程中,给了我一次学习的过程,在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节。在听课的过程中,让我有了茅塞顿开的感觉,当然这些离不开执教者对教材的深入理解,所有这些,都让我这个新教师感动……
《三角形的内角和》教学反思14在课间我有意问了一下学生你们知不知道三角形的内角和是几度,发现有一些学生已经知道三角形三个内角的和是180°,因此在导入环节中插入了一个猜角游戏中,请量出自己准备的三角形的三个角的度数,只要你们说出其中两个角的度数,我能猜出第3个角的度数,让生说我猜,要求用自己准备的.三角形进行操作。有一部分学生已经能跟着我说出第三个角的度数。当时我并没有批评这些学生,而是采用了表扬的方式,学生很开心。
在接下来的实验验证环节中,那些知道三角形内角和是180°的学生就猜度数,而没有进行真正的实验验证,反倒是刚学到的学生真正做到用实验去验证“三角形的内角和中180°”。因此我一直在想,是不是能设计一些新的方式让已经知道三角形内角和是180°的学生也能真正参与到实验验证的环节中来。于是让学生请观察自己手中的三角板,问它们是什么三角形?你知道三角板三个内角的和是多少度吗?问学生发现了什么?
三角尺的三个内角和是180°。然后让学生撕下三角形的三个内角并把它们拼在一起和折三角形的三个内角,使它们正好折在一起,都能拼成一个平角,
最后拿出课前准备好的长方形、正方形,让学生自己想办法验证三角形内角和是180°。我个人认为学生通过亲自动手操作实验得出三角形内角和是180°,这样使他们大胆地想,学生课上注意力比较集中。教师也能在教学活动中从一个知识的传播者自觉转变为与学生一起发现问题、探讨问题、解决问题的组织者、引导者、合作者。
在“想想做做”第2题中,学生在还没有拼的时候先看了书,就猜拼出来的大三角形的内角和是360°,经过提醒“内角”的含义,学生才真正体会到“任何一个三角形的内角和都是180°”,不管这个三角形是大还是小。
《三角形的内角和》教学反思15在教学《三角形的内角和》这一课时,为了达到本节的教学目标,我在教学中根据学生的认知特点,放开手让学生去自己验证三角形的内角和是多少。
上课前学生就已经知道三角形的内角和是180°,为了让学明白为什么是180°,激发了学生的学习兴趣。在讲“三角形的内角和”时,开始就由大小不同的三个角(锐角、直角、钝角)争论谁的角大入手,导出锐角三角形、直角三角形、钝角三角形争论谁的内角和大。对于这场争论的结果是什么,会引发学生的思考,究竟哪个三角形的内角和大?这也正是我本节课要与学生共同研究的问题。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我及时揭示课题,提出学习目标,引导学生讨论学习方法。当学生通过量一量、拼一拼、折一折之后得出自己的结论时,他们体验了成功,也学会了学习。在这节课中师生互动交流,共同找到了几种验证三角形内角和是180°方法,很好地体现了师生的双边活动。试想,如果上课之初,我自己一味的的去告诉他们三角形的内角和为什么是180°,并且告诉他们探究方法,我想即便告诉的'方法再多,再详细,他们学到的也只是有限的方法,而且是老师的方法,不是自己发现的方法。但换一种教学方式,孩子们不但找到了所有我知道的方法,也找到了我意想不到的方法,我们大家在研究中都是受益者。
为学生营造了探究的情境。学习知识的最佳途径是由学生自己去发现,因为通过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。