倒数的认识教学设计

时间:2025-05-28 16:12:49
倒数的认识教学设计

倒数的认识教学设计

作为一名教学工作者,编写教学设计是必不可少的,教学设计是实现教学目标的计划性和决策性活动。那么你有了解过教学设计吗?以下是小编收集整理的倒数的认识教学设计,仅供参考,大家一起来看看吧。

倒数的认识教学设计1

教学目标:

1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。

2、培养学生观察、归纳、推理和概括的能力。

教学过程

一、创设活动情景,引入概念。

出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)

师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。

让学生读一读:倒数。

出示倒数的意义:乘积是1的两个数互为倒数。

二、 探究讨论,深入理解。

让学生说说对到数意义的理解。

提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

判断下面的句子错在哪里?应该怎样叙述?

因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。

三、运用概念,探讨方法。

出示例2,找一找那两个数互为倒数?

汇报找的结果,并说一说怎样找到的?

1,看两个分数的乘积是不是1;

2,看两个分数的分子与分母是否分别颠倒了位置。

讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

通过具体实例总结归纳找倒数的方法。

分子、分母交换位置

例:3/55∕3 3∕5的倒数是5∕3

(2)找倒数的倒数:先把整数看成分母是1的.分数,在交换分子和分母的位置。

分子、分母交换位置

例:6=1∕6 6的倒数是1∕6.

四、出示特例,深入理解

看一看。例2中的那些数据没有找到倒数?(1,0)

提问:1和0有没有倒数?如果有,是多少?

小组讨论、汇报。

1、关于1的倒数。

因为11=1,根据乘积是1的两个数互为倒数,所以1的倒数是1. 交换分子、分母的位置

也可以这样推导:1= 1∕1=1,1的倒数是1.

2、关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

交换分子、分母的位置

也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。

五、巩固练习

1、完成做一做,先独立做,再全班交流。

2、练习六第3题。

用多媒体或投影逐题出示,学生判断,并说明理由。

3、同桌进行互说倒数活动(练习六第2题)。

六、总结

今天学习了什么?

什么叫倒数?怎样找到一个数的倒数?

倒数的认识教学设计2

教学重点:认识倒数并掌握求倒数的方法

教学难点:小数与整数求倒数的方法

教学过程:

一、基本训练

口算:

上面各式有什么特点?

还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

(板书:乘积是1,两个数)

二、引入新课

刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

(板书:倒数)

三、新课教学

1、乘积是1的两个数存在着怎样的倒数关系呢?

请看:,那么我们就说是的倒数,反过来(引导学生说)

是的倒数,也就是说和互为倒数。

和存在怎样的倒数关系呢?2和呢?

2.深化理解

提问:①什么是互为倒数?

怎样理解这句话?(举例说明)

(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)

②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

3.求一个数的倒数

教师设疑:怎样的'两个数互为倒数呢?请同学们试着写一写。

①出示例题

例:写出、的倒数

学生试做讨论后,教师将过程板书如下:

所以的倒数是,的倒数是。

(能不能写成,为什么?)

总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

②深化

你会求小数的倒数吗?(学生试做)

倒数的认识教学设计3

教材分析

《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

学情分析

学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。

教学目标

1、知道倒数的意义,会求一个数的倒数。

2、经历倒数的意义这一概念的形式过程。

3、培养学生观察、归纳、推理和概括的.能力。

4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

教学重点和难点

理解倒数的意义,会求一个数的倒数。

教学过程

教学反思

“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。这节课上,我采用了探究式的教学方法,正确处理了“教教材”和“用教材”的关系。1.在本课的引入中,我没有采用多种铺垫,而是直接通过让学生计算教材中的四个乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明 ……此处隐藏12983个字……理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?

师:2/5和5/2的积是1,我们就说??(生齐说)

师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

(学生活动)

(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

探索求一个倒数的方法

师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

生1:互为倒数的两个数分子和分母调换了位置。

师:同意吗?

生:同意。

师:根据这一特点你能写出一个数的倒数吗?

生:能

师:试一试!

师在黑板上出示3/5 7/2 ,写出它们的倒数。

师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?

生:把5看成是分母是1的分数,再把分子分母调换位置。

求小数的倒数的方法:小数 求带分数的倒数的方法:带分数

三、 分数倒数。 倒数。 假分数

师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)

0的倒数呢?

师:为什么?

生1:因为0和任何数相乘都得0,不可能得1。

师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1 的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。 )

四、巩固练习

1、打开书,阅读课本P34,把你认为重要的划起来。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(4/11=11/4)

生:不可以!

师:为什么?

生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

3、小游戏:同桌互相出一题,对方说出答案。

4、先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是( ) (2)9/7的倒数是( )

2/5的倒数是( )10/3的倒数是( )

4/7的倒数是( ) 6/5的倒数是( )

(3)1/3的倒数是( ) (4)3的倒数是( )

1/10的倒数是( )9的倒数是( )

1/13的倒数是( )14的倒数是( )

由学生说出各数的倒数。然后

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。

4、填空:

7×( )=15/2×( )=( )×3又2/3=0.17×( )=1

五、课堂小结

1、小结:今天我们学习了什么???

2、学了倒数有什么用呢?

大家课后可去思考一下。

板书设计

倒数的认识

乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。

0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。

(0.1=1/10) (5=5/1) (1又1/8=9/8)

求小数的倒数的方法: 求带分数的倒数的方法:带分数

分数假分数 倒数。 倒数。

倒数的认识教学设计15

教学目标:

1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。

2、通过互助活动,培养学生与人合作、与人交流的习惯。

3、通过自行设计方案,培养学生自主探索和创新的意识。

教学重点:

理解倒数的含义,掌握求倒数的方法。

教学难点:

掌握求倒数的方法。

教学过程:

一、导入

1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。

2、按照上面的规律填数。

3、揭示课题。今天,我们就来研究这样的`数——倒数。

二、教学实施

1、师:关于倒数,你想知道什么?

2、学习倒数的含义。

(1)学生观察教材第28页主题图。

(2)学生根据所举的例子进行思考,还可以与老师共同探讨。

(3)学生反馈,老师板书。

学生可能发现:

每组中的两个数相乘的积是1。

每组中两个数的分子和分母的位置互相颠倒。

每组中两个数有相互依存的关系。

(4)举例验证。

(5)学生辩论:看谁说得对。

(6)归纳:乘积是1的两个数会为倒数。

3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。

4、求倒数的方法。

(1)出示例1、

(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。

5、反馈练习。

(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。

(2)完成教材第29页练习六的第1—5题。

三、课堂作业设计

1、找一找下列各数中哪两个数互为倒数。

2、填空。

(1)三分之四的倒数是(),()的倒数是六分之七。

(2)10的倒数是(),()的倒数是1。

(3)二分之一的倒数是(),()没有倒数。

《倒数的认识教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式