
【精华】小学数学教案集合5篇
作为一名老师,常常需要准备教案,教案有助于顺利而有效地开展教学活动。怎样写教案才更能起到其作用呢?以下是小编帮大家整理的小学数学教案5篇,希望对大家有所帮助。
小学数学教案 篇1教学内容
教科书第40~41页例2,练习九第3~7题。
1.使学生进一步理解并掌握圆锥体积的计算公式,能较熟练地运用圆锥的体积公式解决问题。
2.在解决问题的过程中,学会思考,增强思维的灵活性,培养学生有序思考的习惯。
3.在探究问题中,发展学生的空间观念。
运用圆锥体积的计算方法解决生活中的问题。
灵活运用圆锥的体积计算公式解决问题。
小黑板
一、复习引入课题
教师:怎样计算圆锥的体积?
学生回答,教师板书体积公式:V=13SH
教师:谁能说说圆锥的体积计算公式是怎么推导出来的?
抽学生简要叙述圆锥的推导过程。
教师:要求圆锥的体积,应该知道哪些条件?
让学生弄清要求圆锥的体积应该知道圆锥的底面积和高。
教师:这节课我们就利用圆锥体积的计算方法解决生活和学习中常见的数学问题。
板书课题:圆锥的体积二
二、探究新知
1.教学例2
教师用投影仪出示例2。
一煤堆的底面周长18.84M,高1.8M,这个煤堆近似一个圆锥体。准备用载重5吨的车来运。一次运走这堆煤,需要多少辆车?(1M3煤重1.4吨)
教师要求学生带着问题理解题意。用投影仪出示问题。
(1)这道题讲的是什么事情?知道哪些条件?要求什么问题?
(2)要求这堆煤的质量,必须先求什么?
(3)要求煤的体积应该怎么办?
(4)这题应先求什么?再求什么?最后求什么?
教师鼓励学生独立思考,教师适时点拨。
反馈:要求学生用完整的语言叙述题意。
教师抽学生叙述思考过程,要求语言简洁,思路清晰。
在反馈过程中,尽量多抽几个学生叙述。
通过讨论,使学生明白,这题的关键是求出圆锥形煤堆的体积,也就求出了煤堆的质量。
教师抽学生上台板算。
板书:
煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的体积:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(辆)答:……
教师:最后的结果为什么要取整数部分再加1?
让学生明白装了4辆车后,剩下的虽然不够装一车,仍然要用一辆车装,因此要取整数。
教师:在实际生活和学习中,经常会遇到不知道底面积的情况,这时怎样求圆锥的体积?
2.小结
要求圆锥的体积必须知道底面积和高,如果只知道底面半径、底面直径或底面周长和高,要先算出圆锥的.底面积,再利用圆锥的体积公式求出圆锥的体积。学会具体问题具体分析。
三、巩固练习
1.教师用投影仪出示教科书第42页第3题
观察图形,独立解答。抽二生上台板算。
让学生理解此题应先算出圆锥的底面积,才能求出容器的体积。
2.解答教科书第42页第4题
学生独立解答,抽生反馈说出思考过程。
通过这一题的练习,体会圆锥与圆柱之间的关系。
3.解答练习九第6题
学生独立完成,小组交流,展示思考过程,先算什么,再算什么。解答此题的关键是抓住体积不变进行解答。
4.发展练习
有一个底面周长是31.4DM,高9DM的圆锥形容器里装满了黄豆,现在要把这些黄豆放入另一个高9DM的圆柱形容器里,刚好装满。这个圆柱形容器的底面直径有多大?
教师引导学生读题,理解题意。
弄清已知条件和问题,根据条件寻找中间问题。明白先算什么,再算什么。
学生小组内交流,探讨解决方案。
反馈:学生用完整清晰的语言叙述解题思路。
弄清解决这题的关键是抓住黄豆的体积不变,即圆柱和圆锥的体积相等。这是解答此题的突破口。教科书练习九第5题,第7题。教师:今天这节课我们学了什么知识?通过这节课的学习,对圆锥的体积计算更熟悉了。知道圆锥和圆柱的知识与我们的生活息息相关,在解决实际问题时,应有序思考,灵活运用知识。
例2……
煤堆的底面积:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的体积:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(辆)答:
小学数学教案 篇2课前思考:
1.概念揭示变逻辑演绎为活动建构。因数和倍数,传统教材是按数学知识的逻辑系统(除法整除约数和倍数)来安排的,这种概念的揭示,从抽象到抽象,没有学生亲身经历的过程,也无须学生借助原有经验的自主建构,学生获得的概念是刻板、冰冷的。如果能借助学生的操作和想象活动,唤起学生的因倍意识,自主建构起因数和倍数的意义,那么学生获得的概念必然是生动的、有意义的。
2.解决问题变关注结果为对话生成。要找出一个数的几个因数并不难,难就难在找出这个数的所有因数。这里有一个方法问题。是把方法简单地告诉学生,迫切地寻求结果,还是给学生充分的探究时间,让他们通过独立思考、交流讨论,从而发现问题、解决问题呢?很多成功的教学表明,在教学中为学生营造出一个对话场,在生生、师生多角度、多层面的对话中,能让师生彼此分享经验、沟通思考,生成新的看法。
3.教学宗旨变关注知识为启迪智慧。知识关乎事物,智慧关乎人生;知识是理念的外化,智慧是人生的反观。从知识课堂走向智慧课堂,为学生的智慧成长而教,应成为我们数学教学的倾心追求。怎样通过对因数和倍数内涵的深度挖掘,在教给学生数学知识的同时,更教会他们数学思考的方法,让他们在数学课堂上释放潜能,开启心智?这是我设计因数和倍数这堂课的宗旨所在。
教学目标:
1.通过活动建构,使学生领会因数和倍数的意义;通过独立思考、交流谈论,初步掌握求一个数所有因数的方法。
2.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。
3.通过教学,让学生从中感受到数学思考的魅力,体验到数学学习的乐趣。教学准备:
练习纸、学号卡等。
教学重、难点:
掌握求一个数的所有因数的方法,学会有序地进行思考。
教学流程:
……此处隐藏3722个字……:3+2+43、第二天它们又去钓鱼了,每人钓到了2条,它们一共钓到了多少条?
学生列式计算:可以用加法,也可以用乘法:2×3。
说说2×3表示什么意思。
4、第三天它们又去钓鱼了,蓝猫钓到了3条,黄猫钓到了0条,红猫钓到了4条。
问1:它们一共钓了几条?
问2:蓝猫和黄猫一共钓了几条?(学生列式,教师板书:3+0=3)
问3:红猫比黄猫多钓了几条?(学生列式,教师板书:4-0=4)
5、第四天它们又去了,这一天它们一边钓鱼一边捉蝴蝶,所以每人都只钓到0条鱼,谁能说说它们一共钓了多少条鱼?
(1)一条也没有。
(2)0+0+0=0
(3)你能把它变成乘法算式吗?学生跟同桌交流一下。
(4)0×3=0或3×0=0
(5)谁能说说为什么0与3相乘会等于0?学生交流一下。
二、0与一个数相乘得0。
1、除了0与3相乘得0外,你还知道谁与谁相乘等于0吗?
(1)学生交流一下,列出一些算式。
(2)教师根据学生的口答说说一些0与一个数相乘等于0的算式,如0×7为什么等于0。
(3)你发现了什么?跟你的同桌交流一下。
2、学生交流发表意见,师板书:0与一个数相乘得0。
3、你能说出这样的几个算式吗?这些算式有何共同特点?
4、练习:0×4 9×0 16×0 234×0 839×3×0
(1)为什么你那么快就知道839×3×0的结果是0呢?
(2)789×4×3×0×7它的结果也是( )?
(3)指出:不管这个数有多大,只要它是乘以0的,结果总是0。
5、观察三个板书:你能发现什么吗?(任何数加0都得任何,任何数减0等于任何数,任何数乘0都得0)
三、应用:乘数中间有0的乘法。
1、学校体育馆有4个同样的看台,其中一个是这样的:师出示图画
6排,每排17个
(1)谁能估计一下这里一共有多少个座位?
(2)如果要求你计算,你打算先计算什么?可以先计算:每个看台有多少个座位?
(3)17×6=102,你再估计一下。
(4)用竖式计算:102×4
1 0 2
× 4
4 0 8
(5)积的十位上写几?为什么?学生讨论一下。
四、练习
1、想想做做第1、2题,学生完成在书本上。集体核对。
2、出示想想做做第3题,学生找一找,错在哪里,再在书本上改正。
3、出示想想做做第5题,你能估计一下,这里一共有多少本书吗?能说说你的方法吗?
全班汇总计算的方法?
4、想想做做第6题。学生说说已知条件,并提出问题。
五、课堂作业
p77 想想做做第4、6题。
板书设计: 乘数中间有0的乘法
3 +0=3
4-0=4 102×4=408
0×3=0或3×0=0 1 0 2
× 4
4 0 8
0与一个数相乘得0
课前思考:
这部分内容教学成熟中间或末尾有0的三位数乘一位数的笔算。教材分两段安排:第一段教学成熟中间有0的三位数乘一位数的笔算,第二段教学成熟末尾有0的三位数乘一位数的笔算。由于乘数中间或末尾有0的乘法是乘法计算中相对特殊的情况,所以安排在三位数乘一位数基本笔算方法的教学之后。
课后反思:
本课通过小猫钓鱼的童话事情导入教学,学生感兴趣,他们在这种兴趣下自主学习,课堂教学效果非常好。课一开始的时候我担心学生不能一下子说出0×3(三个0相加),所以我特地设计了三个2相加用2×3表示,并且顺势将题目转化成所要新学的知识,很自然地突破了本课的难点。这样学生有了前面的启示,就能很容易的说出3×0并且知道得数是0。然后以此类推,学生能说出100×0也是0,逐步得出结论:0乘一个数都得0。在这一新课上,学生能很轻松地得出这个结论,有了这个坚实的基础,学生在计算乘数中间有0的乘法也就毫不费力。当然,0与任何数(任何数与0)相加都等于任何数,或任何数减0都等于任何数这两个知识点也进行了复习,特别是0与任何数相加都等于任何数,在笔算中需要用到。经过了几次简单的笔算后,总结了中间有0的三位数乘一位数的乘法的不同类型,主要是个位有进位时,进上来的数就是积的十位,可以直接写在积的十位,如果没有能力的同学,应该一步一步乘。通过几次笔算,有一部分学生能直接口算出得数,其熟练程度可想而知。但在练习中,有一小部分学生出现0乘任何数等于任何数这一情况,经讲解后,有改善。
课后反思:
课前部分学生已经知道0不管乘以哪个数都等于0。课堂上,出示场景图后,学生思考写出乘法算式3×0或0×3,并确认积是0。接着“想一想”中0×7和8×0这两道题,学生都可以口答各题的得数。学生能通过比较上述各题的共同特点,并归纳出:0与一个数相乘仍得0。第二道例题,我让学生独立思考计算一个看台座位的.数量,有的学生说先数一数几排,再数一数每排有几个座位,然后相乘。也有很多学生说只要看第一个座位“1排1号”和最后一个座位“6排17号”,可以知道这个看台一共有6排,每排17号,所以只要用6×17就可以知道这个看台有多少个座位。在作业中发现学生有0×4等于4的现象。
课后反思:
本课第一部分内容的知识,部分学生已经有所了解了。通过三只小猫钓鱼的情景图帮助学生理解0×3=0的具体含义,由0×7=0,8×0=0使学生发现0的特殊特征:0与一个数相乘得0。第二部分内容主要是帮助学生理解乘数中间有0的乘法计算与乘数中间没有0的乘法之间的不同,并抓住“积的十位上写几?为什么?”使学生认识到当个位上数相乘,三位数的十位是0的情况下,个位的进位可以直接写在积的十位上。但是从作业的批改中发现有极个别学生积的十位上没有写进位而是直接写了0。
课后反思:
小猫钓鱼的故事袁老师之前跟学生讲过,所以当我出示小猫钓鱼的情境图时,学生非常感兴趣。在此基础上提了很多问题,引出0乘任何数都得0这一结论,接着出示839×3×0×7 让学生说说结果是多少,改变题目后变为839×3×0+7让学生再说说结果是多少,学生都能异口同声的回答我,最后帮他们总结为三条:第一不管多大的数与0相乘,结果还是0;第二任何数与0(0与任何数)相加结果等于任何数;第三任何数减0结果等于任何数 。教学第二部分内容时,是让学生根据图中给出的座位号能获得哪些信息,看图说信息学生已不止一次遇到过,所以很快告诉我有价值的信息,进而开始教学今天的重点,笔算中间有0的三位数乘一位数的乘法,先让学生根据算出一个看台的座位数估算同样的4个站台的座位数是多少,为学生接下来探索并理解乘数中间有0的三位数乘一位数的笔算方法提供了支持。