初中数学定理

时间:2025-08-02 08:46:27
(荐)初中数学定理大集合15篇

(荐)初中数学定理大集合15篇

初中数学定理大集合1

1过两点有且只有一条直线

2两点之间线段最短

3同角或等角的补角相等

4同角或等角的余角相等

5过一点有且只有一条直线和已知直线垂直

6直线外一点与直线上各点连接的所有线段中,垂线段最短

7平行公理经过直线外一点,有且只有一条直线与这条直线平行

8如果两条直线都和第三条直线平行,这两条直线也互相平行

9同位角相等,两直线平行

10内错角相等,两直线平行

11同旁内角互补,两直线平行

12两直线平行,同位角相等

13两直线平行,内错角相等

14两直线平行,同旁内角互补

15定理三角形两边的和大于第三边

16推论三角形两边的差小于第三边

17三角形内角和定理三角形三个内角的和等于180°

18推论1直角三角形的两个锐角互余

19推论2三角形的一个外角等于和它不相邻的两个内角的和

20推论3三角形的一个外角大于任何一个和它不相邻的内角

21全等三角形的对应边、对应角相等

22边角边公理有两边和它们的夹角对应相等的两个三角形全等

23角边角公理有两角和它们的夹边对应相等的两个三角形全等

24推论有两角和其中一角的对边对应相等的两个三角形全等

25边边边公理有三边对应相等的两个三角形全等

26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等

27定理1在角的平分线上的点到这个角的两边的距离相等

28定理2到一个角的两边的距离相同的点,在这个角的平分线上

29角的平分线是到角的两边距离相等的所有点的集合

30等腰三角形的性质定理等腰三角形的两个底角相等

31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32等腰三角形的顶角平分线、底边上的中线和高互相重合

33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35推论1三个角都相等的三角形是等边三角形

36推论2有一个角等于60°的等腰三角形是等边三角形

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38直角三角形斜边上的中线等于斜边上的一半

39定理线段垂直平分线上的点和这条线段两个端点的距离相等

40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42定理1关于某条直线对称的两个图形是全等形

43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c

47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形

48定理四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理n边形的内角的和等于(n-2)×180°

51推论任意多边的外角和等于360°

52平行四边形性质定理1平行四边形的对角相等

53平行四边形性质定理2平行四边形的对边相等

54推论夹在两条平行线间的平行线段相等

55平行四边形性质定理3平行四边形的对角线互相平分

56平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3对角线互相平分的四边形是平行四边形

59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60矩形性质定理1矩形的四个角都是直角

61矩形性质定理2矩形的对角线相等

62矩形判定定理1有三个角是直角的四边形是矩形

63矩形判定定理2对角线相等的平行四边形是矩形

64菱形性质定理1菱形的四条边都相等

65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即S=(a×b)÷2

67菱形判定定理1四边都相等的四边形是菱形

68菱形判定定理2对角线互相垂直的平行四边形是菱形

69正方形性质定理1正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1关于中心对称的两个图形是全等的

72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

83(1)比例的基本性质如果a:b=c:d,那么ad=bc

如果ad=bc,那么a:b=c:d

84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

(a+c+…+m)/(b+d+…+n)=a/b

86平行线分线 ……此处隐藏23145个字……个平面直角坐标系x轴叫横轴,y轴叫纵轴,它们都叫直角坐标系的坐标轴;公共原点o称为直角坐标系的原点;我们把建立了直角坐标系的平面叫直角坐标平面简称坐标平面两坐标轴把坐标平面分成四个部分,它们叫做四个象限

22 两点间的距离

23 中点公式

3 函数

31 常量,变量和函数

在某一过程中可以去不同数值的量,叫做变量在整个过程中保持统一数值的量或数,叫做常量或常数

一般地,设在变活过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量

1. 函数的定义域

2. 对应法则

(1) 解析法

就是用等式来表示一个变量是另一个变量的函数,这个等式叫做函数的解析表达式(函数关系式)

(2) 列表法

(3) 图像法

3 函数的值域

一般的,当函数f(x)的自变量x去定义域D中的一个确定的值a,函数有唯一确定的对应值这个对应值,称为x=a时的函数值,简称函数值,记作:f(a)

32 函数的图像

若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x))的集合构成一个图形F,而集F成为函数y=f(x)的图像

知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤

4 正比例函数

41 正比例函数

一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k叫做变量y与x之间的比例函数确定了比例函数k,就可以确定一个正比例函数

正比例函数y=kx有下列性质:

(3) 当k>0时,它的图像经过第一,三象限,y随着x的值增大而增大;当k<0时,他的图像经过第二,四象限,y随着x的增大而减小

(2)随着比例函数的绝对值的.增加,函数图像渐渐离开x轴而接近于y轴,因此,比例系数k和直线y=kx与x轴正方向所成的角有关据此,k叫做直线y=kx的斜率

42 反比例函数

一般地,函数y=k/x(k是不等于0的常数)叫做反比例函数

反比例函数y=k/x有下列性质:

(7) 当k>0时,他的图像的两个分支分别位于第一,三象限内,在每一个象限内,y随x的值增大而减小;当k<0时,它的图像的两个分支分别位于第二、四象限内,在每一个象限内,y随x的增大而增大

(8) 它的图像的两个分支都无限接近但永远不能达到x轴和y轴

5 一次函数及其图像

51 一次函数及其图像

如果k=0时,函数变形为y=b,无论x在其定义域内取何值,y都有唯一确定的值b与之对应,这样的函数我们称它为常函数

直线y=kx+b与y轴交与点(0,b),b叫做直线y=kx+b在y轴上的截距,简称纵截距

52 一次函数的性质

函数y=f(小),在a〈x〈b上,如果函数值随着自变量x的值增加而增加,那么我们说函数f(x)在a〈x

如果分别画出两个二元一次方程所对应的一次函数图像,交点的坐标就是这个方程组的解,这种求二元一次方程组的解法叫图像法

初中数学正方形定理公式

关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

正方形定理公式

正方形的特征:

①正方形的四边相等;

②正方形的四个角都是直角;

③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

正方形的判定:

①有一个角是直角的菱形是正方形;

②有一组邻边相等的矩形是正方形。

希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。

初中数学平行四边形定理公式

同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。

平行四边形

平行四边形的性质:

①平行四边形的对边相等;

②平行四边形的对角相等;

③平行四边形的对角线互相平分;

平行四边形的判定:

①两组对角分别相等的四边形是平行四边形;

②两组对边分别相等的四边形是平行四边形;

③对角线互相平分的四边形是平行四边形;

④一组对边平行且相等的四边形是平行四边形。

上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

初中数学直角三角形定理公式

下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。

直角三角形的性质:

①直角三角形的两个锐角互为余角;

②直角三角形斜边上的中线等于斜边的一半;

③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

④直角三角形中30度

角所对的直角边等于斜边的一半;

直角三角形的判定:

①有两个角互余的三角形是直角三角形;

②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2

,那么这个三角形是直角三角形(勾股定理的逆定理)。

以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

初中数学等腰三角形的性质定理公式

下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

等腰三角形的性质:

①等腰三角形的两个底角相等;

②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

初中数学三角形定理公式

对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

三角形

三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

三角形的内角和定理:三角形的三个内角的和等于180度;

三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

三角形的三条角平分线交于一点(内心);

三角形的三边的垂直平分线交于一点(外心);

三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

《(荐)初中数学定理大集合15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式