
长方形和正方形的面积教学设计
作为一名教学工作者,就有可能用到教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。优秀的教学设计都具备一些什么特点呢?以下是小编收集整理的长方形和正方形的面积教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
长方形和正方形的面积教学设计1教学目标:
1、引导学生自己去发现长方形面积计算的公式,使学生初步理解长方形面积的计算方法,会运用公式正确的进行计算。
2、通过长方形的面积计算引导学生推导出正方形的面积计算公式。
3、交给学习方法,发挥学生的主体性。初步培养学生提出问题、分析问题、解决问题的能力。
教学过程:
一、创设情景,导入新课
1、上节课我们学习了有关面积的知识,常用的面积单位有哪些?
2、巧设问题,激发兴趣。
我们教室地面的面积大约是多少呢?学生可能进行猜测,用面积单位来测量,教师指出:这么大的地面用面积单位来测量太麻烦,所以,我们就要研究长方形的面积怎样计算。(板书课题)
二、动手操作,研究方法
1、教师准备三种不同的长方形,每组只选择一种进行研究。
一个长3厘米、宽4厘米的长方形 ;一个长4厘米、宽2厘米的长方形;一个长5厘米、宽3厘米的长方形
(1)学生以组为单位进行研究,想办法求出各自图形的`面积。
(2)学生以组为单位进行汇报交流,说出自己的方法。(可能出现的情况:用1平方厘米来测量或只测量长和宽,相乘即是面积。在这个过程中教师适时地进行点拨、指导,后一种方法比较简单。)
(3)师生交流,提炼方法。长方形的面积与它的什么有关系呢?独立思考后交流。
(4)学生思考:求长方形的面积事实上是求什么呢?
2、那么同学们想一想我们教室地面的面积怎样计算呢?(例题)
学生独立完成,校对
3、学习正方形的面积计算。我们知道正方形是一个特殊的长方形,有长方形的特点,所以正方形的面积计算也可以和长方形的面积计算方法相同。
4、出示例题3。学生试做,汇报答案。
三、联系生活,解决问题
1、我们用的数学书的面积大约有多少?先请你估计一下,再算一算。(学生独立完成,汇报。)
2、生独立完成P79页第1、2题。
四、全课总结
1、通过今天的学习,你有什么新的收获?
2、师总结。
长方形和正方形的面积教学设计2本节课是在学生学习了长方形和正方形的周长与面积后设计的一节综合实践课。
一、教学内容:
探究当长方形周长一定时,面积的变化规律:长方形周长一定,长和宽越接近面积越大,长和宽相等时(即正方形)面积最大。
二、数学知识背景分析:
所谓的等周问题:等周定理,又称等周不等式,是一个几何中的不等式定理,说明了欧几里得平面上的封闭图形的周长以及其面积之间的关系。其中的“等周”指的是周界的长度相等。等周定理说明在周界长度相等的封闭几何形状之中,以圆形的面积最大;另一个说法是面积相等的几何形状之中,以圆形的周界长度最小。
虽然等周定理的结论早已为人所知,但要严格的证明这一点并不容易。首个严谨的数学证明直到19世纪才出现。之后,数学家们陆续给出了不同的.证明,其中有不少是非常简单的。
而将图形锁定在长、正方形上就是我们今天这节课所要研究的问题。而这个问题对应的代数问题即所谓的均值定理或均值不等式:算术平均数大于几何平均数。如果我们设长为a〉0,宽为b〉0,周长C=2(a+b),面积S=ab,我们有当且仅当a=b时,等号成立。
等价于
于是当周长C一定时,a+b的和一定,所以当且仅当a=b时,即正方形面积最大,最大面积为
数学大厦中这么有趣和著名的问题居然出现在小学三年级的数学课本中,想到这些我不禁兴奋起来。作为教师我们怎么能轻易放过这样的数学教学素材,怎么能不让我们的学生亲自体验一下探究数学的乐趣,怎么能不让教师和学生一起来体验数学的美。
于是我精心设计了这节课,但问题是毕竟面对三年级的学生,讲到什么程度,怎么教,教学目标是什么等一系列问题是我下一步要认真思考的。
三、学情分析:
学生已掌握了长正方形的周长和面积计算公式的基础上进行教学的,但对于知识的灵活运用还有待提高,三年级的学生抽象、概括能力,独立探究规律的能力也有待增强。
四、课程理念:
a+b
2≥ab(a+b2)2≥ab(a+b2)2=(C4)2
国家对教育改革发展的要求是:要鼓励学生创造性思维、着力提高学生的学习能力、实践能力、创新能力。20xx年的新课程标准将原来的双基变为了四基即:让学生获得基础知识、基本技能、基本数学思想、基本活动经验。四基是双基的继承和超越,基本活动经验获得了与基础知识、基本技能、基本数学思想、同等重要的地位。数学活动经验的积累有助于落实新课程的能力性目标、过程性目标、情感性目标的及对学生应用意识、创性能力的培养。数学活动经验的积累是学生数学素养的重要标志。因此我们要重视数学活动经验的积累。
五、教学目标:
1.探究发现长方形周长和面积的变化规律:周长一定,长和宽越接近,面积越大;长和宽相等时,面积最大。
2.在自主探索、交流、合作等活动过程中,运用画图、列表等方法,渗透有序思考和数形结合思想。积累学生从事探索规律活动的经验。
3.激发学生学习数学的兴趣,体验探索知识的乐趣,体会数学的应用价值。
六、基本流程:
引发思考—发现规律—验证规律—几何解释—应用规律
七、教学过程:
(一)故事激趣,以退为进
导入:我们来先听一个故事,故事的名字是“欧拉智改羊圈”。
欧拉是著名的数学家,他小时候,要帮助爸爸放羊。羊渐渐越来越多了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,面积正好是(600平方米),围这样一个羊圈,需要用多长的篱笆,(15+15+40+40=110)可爸爸发现他的材料只够围100米的篱笆,不够用。正当父亲感到为难的时候,小欧拉却向父亲说:“我能用100米长的篱笆,围成一个比这个羊圈面积还大的羊圈。”
提问:你认为小欧拉的说法可行吗?预设1:围成正方形面积大。预设2:围成圆形面积最大。预设3:可以靠墙围面积大。
揭示课题:看来我们还需要进一步的来研究长、正方形的周长与面积。导语:“100米”数太大了不 ……此处隐藏9945个字……场的面积能摆出来吗?为什么?
3.揭示课题:今天我们就来学习新方法用来计算长方形和正方形的面积。
[设计意图:针对学生的知识基础,设计实践应用阻力,让学生体验长方形面积计算的必要性。]
三、自主探究1.(1)每个小组任取几个1平方厘米的正方形,拼成不同的`长方形。边操作,边填表。
长(厘米)宽(厘米)
面积(平方厘米)
(2)学生动手操作,并计算所摆的长方形面积的大小。
2.让学生思考长方形的面积与它的长和宽有什么关系。
3.归纳总结。学生得出结论:长方形的面积=长×宽。
教师追问:求长方形面积必须知道长方形的哪个条件?
[设计意图:让同学们利用手中的小正方形摆一摆你最喜欢的长方形或正方形,激发学生的兴趣。边记录边思考长方形的面积与什么有关系,有怎样的关系?为学生交流做铺垫。同时,培养学生观察、质疑、分析、解决问题的能力。]
4.反馈练习。
做一做:先量一量,再计算它们的面积。
长=长=
宽=宽=
面积=面积=
5.仔细观察,你发现了什么?
6.归纳小结:正方形的面积=边长×边长。
7.计算下面图形的面积。(单位:厘米)
8.自学例3:一张长方形的餐桌,桌面长14分米、宽9分米。要配上同样大小的玻璃,这块玻璃的面积应该是多少平方分米?
[设计意图:在学生已经认识了长、正方形面积的计算方法的基础上,让学生自学例3,使学生能更熟练的运用公式。]
四、实践应用
1.竞赛能手
(1)门面长2米,宽1米,它的面积是()。
(2)黑板长3米,宽1米,它的面积是()。
(3)一块正方形手帕的边长是20厘米,它的面积是()。
2.智慧冲浪
足球场的长是80米,宽是80米。它的面积是多少平方米?
3.勤学巧用
篮球场的长是28米,宽是15米。它的面积是多少平方米?半场是多少平方米?
4.估一估
请同学们任意选择身边的一样物体,先估计物体一个面的面积,并测量长长、宽计算面积,看看哪位同学估计得最准确。
5、巩固练习
1、黑板长34分米,宽12分米,花边至少长多少分米?
2、一个长方形花坛,长30米宽15米。
(1)求这个花坛的占地面积。
(2)在花坛的四周围一圈栏杆,求围栏的长度。 [设计意图:通过形式多样的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创造意识。]
五、课堂总结
今天你学会了什么?把收获讲给大家听。
六、板书设计
长方形、正方形面积的计算
长方形的面积=长×宽
正方形的面积=边长×边长
教学反思:这节课的设计充分体现了新课程所倡导的“数学学习不是一个简单的接受过程,而是学生自己体验探索实践的过程”这一理念,课堂中给学生提供了充分的活动空间和时间,让学生合作探究,发现规律,提出猜想,验证概括。练习部分让学生用所学知识解决生活中的简单问题,体现了数学来源于生活,服务于生活的理念,使学生感受到学习数学的乐趣。建议在提出猜想之前,利用课件演示长方形的变化,如:一个长方形宽不变,长变长,观察面积的变化;另一个长方形长不变,宽加长,面积的变化,让学生猜想长方形的面积与它的长和宽有关系。
长方形和正方形的面积教学设计12教材说明
这部分教材是在学生知道面积的含义,初步认识面积单位和学会用面积单位直接量面积的基础上教学的。学生在用面积单位直接量时,体验到这样做很麻烦。因此教材开始提出能不能找到其他比较简便的方法,以引起学生思考。
教材采取引导学生自己试验、探索的方法来学习长方形面积的计算公式。让学生先用1平方厘米的小正方形量长5厘米、宽3厘米的长方形纸,在量的过程中找出长方形的面积与它边长有什么关系,从而找出长方形面积的计算公式。这样不仅有助于理解面积的含义,面积计算公式的来源,而且有助于发展学生的思维,培养学生的学习能力。
教学正方形的面积计算,则在掌握长方形面积计算的基础上完全让学生自己去推想。这样有助于培养学生迁移、类推的能力。
在练习题中,注意安排让学生实际计量的问题(如练习二十六第3、4题),这样有利于培养学生动手操作和用所学知识解决简单的实际问题的能力。练习还出现少数计算组合图形的面积的题目(如第12*题和思考题),但不作为共同要求,也不作为考试内容。
教学建议
1.这一小节可用2课时进行教学,教学长方形和正方形面积的计算,完成练习二十六的习题。
2.教学长方形面积之前,可以给每个学生准备好一张长5厘米、宽3厘米的长方形纸,20个1平方厘米的小正方形。先让学生用摆小正方形的方法,求出这个长方形的面积。启发学生同时想下面的问题:怎样能较快地确定可以摆多少个1平方厘米的小正方形?这个长方形所含的平方厘米数与它的边长有什么关系?长方形的面积该怎样计算?然后让学生在自己操作和思考的基础上对三个问题逐一进行讨论。最后教师参照课本说明:长5厘米,沿着长边一排可以摆5个1平方厘米,是5平方厘米;宽3厘米,沿着宽边可以摆3排,一共是15平方厘米。(边说边演示),可以看出,长方形包含的平方厘米数,正好等于长和宽所含厘米数的积。所以要算长方形的面积只要把长边的厘米数和宽边的厘米数乘起来。写算式时要强调正确写出面积单位平方厘米。
3.教学例题中正方形面积的计算,可以让学生联系长方形面积的计算方法推想出来。遇到学生中有不同的算法,如少数算成5×4=20(平方分米),可以引导学生讨论,这样计算对不对,为什么不对。结合正方形图使学生明确正方形每边长5分米,就想到一排摆5个1平方分米的小正方形,要摆这样5排,所以要算5×5。
4.关于练习二十六中一些习题的教学建议
做第3题时,要实际量出黑板的长和宽各是多少分米。如果遇到黑板的.长和宽不是整分米,可以向学生说明量到最后不够1分米的,按四舍五入法省略。就是满5厘米的,分米数加1,不满5厘米的舍去。确定长、宽的分米数以后,再计算黑板的面积是多少。
第12题,要让学生明确这道题求的是什么,根据题目的已知条件能否直接求出?要先算哪一步?然后让学生自己去完成。
本节的思考题,实际是求组合图形的面积。需要先分析出涂色部分与两个正方形的面积有什么关系。涂色部分可以分成左上和右下两个相同的图形,而每个图形的面积等于一个大正方形的面积减去一个小正方形的面积。每个大正方形的边长是4厘米,每个小正方形的边长从图上可以算出是4-2=2(厘米)。由此可以求出大正方形和小正方形的面积分别是16平方厘米和4平方厘米。从而算出左上部和右下部的面积各是16-4=12(平方厘米),阴影部分的面积应是12×2=24(平方厘米)。